Chapter 6

Building a Semantic Network

A semantic network is a propositional knowledge structure consisting
of a set of nodes that are selectively connected to each other by links
labeled by the relationship between each pair of connected nodes
(Fahlman 1979, 1981; Quillian 1968; Stillings et al. 1987, chap. 4).
Links in such networks may assert category membership or a part-to-
whole property. These can be described as is-(a) and has-(a) relation-
ships such as “A trout is a fish” and “A trout has gills” (figure 6.1).
Many other kinds of relationships among nodes may also be repre-
sented by labeled links. For example, a link could represent the con-
cept is made of, as in “a crowbar is made of steel,” or a relationship of
relative weight, as in “an elephant weighs more than a mouse.”

When a synaptic matrix serves as a biological instantiation of a
semantic network, the word-tokened inputs to its mosaic cells and
the tokened class cells of its output correspond to nodes. Selectively
augmented synaptic transfer weights (¢) on the appropriate filter
cells correspond to the links among the nodes. The relationships
among connected nodes might be labeled in at least two ways. One
way would be to have a separate synaptic matrix devoted to each
kind of relationship between nodes—for example, a matrix that pro-
cesses only is-(a) relationships and one that processes only has-(a)
relationships. The other approach, the one adopted here, is to have
the internodal relationship represented by the predicate node. Thus,
instead of “A trout (node 1) s (labeled link)> gills (node 2),” the
synaptic matrix representation would be “A trout (node 1) «¢ link>
has gills (node 2).” In this scheme, an object and an implication about
the object taken together constitute a predicate category that is sig-
naled by the discharge of a single physically indexed cell.

The Synaptic Matrix as a Semantic Network

Consider the following sequence of sentences that could provide the
kind of information captured in the network illustrated in figure 6.1:
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Figure 6.1

A semantic network composed of abstract nodes designating entities and abstract links
designating relationships between connected nodes. Notice that if there were no direct
has link between trout and gills, traversal of the is a link from trout to fish and the has
link from fish to gills allows the proposition trout has gills.

(1) A trout is a fish.

(2) A fish has gills.

(3) A fish has fins.

(4) Fish is food.

(5) Fish is animal.

(6) An apple is a fruit.

(7) Fruit has a stem.

(8) Fruit is food.

(9) Fruit is vegetable.
(10) An animal is a living thing.
(11) A vegetable is a living thing.

Each string that composes one of the sentences consists of a sequence
of visual or auditory patterns that must be registered, parsed, and
subjected to lexical classification by means of neuronal activity. Some
kind of analytic brain mechanism, shaped by learning within a partic-
ular cultural context, must be able to perform a syntactic decomposi-
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tion of the string so that subject and predicate can be designated and
processed appropriately.

Let us consider how a synaptic matrix might process sentences that
are presented as visual stimuli. It is assumed that the pattern of
marks that constitute the words of a printed sentence can, like any
other visual pattern, be mapped into sets of indexed cells that would
be part of a lexical module. When we considered the synaptic matrix
in the context of visual processes, retinal stimuli, after translation to
the normal foveal axis, were input to an array of cells in the matrix
that were designated as mosaic cells (M). The circuitry for semantic
processing is somewhat different. It requires a set of autaptic cells
that capture the neuronal tokens of words in short-term memory
(working memory); it is the activity of these cells, which we shall call
word cells (W), that provides the direct afferent excitation to the mo-
saic cell array (M). Thus, W; and M; might represent apple, and W,
and M, might represent is (a) fruit. The designations for filter cell (f)
and class cell (2) remain unchanged, as do the biological properties
of the detection matrix and the imaging matrix.

The objective is to establish within a synaptic matrix a preferred
excitation path from W; (apple) to Q, (is (a) fruit) so that upon any
subsequent presentation of the word apple, the semantically appro-
priate class cell (),) will be discharged. This can be done in a simple
learning procedure if the filter cell coupled to the class cell token of
the predicate is (a) fruit were to discharge concurrently with the W-
token input that represents the subject apple. Because of the sequen-
tial nature of sentence strings, however, the required temporal
overlap of subject and predicate does not occur naturally; some
means must be provided to compensate for this if the proper associa-
tion is to be learned.

The desired cooccurrence of the tokens for subject and predicate
can be ensured if discharge of the word cell (W) representing the
subject is sustained beyond the duration of its evoking stimulus and
terminated after the predicate cell has discharged. This is accom-
plished by having each word cell in the input array to the synaptic
matrix be an autaptic cell and priming the array so that each word
token (W,) continues to discharge (as a latched cell) until the stimulus
sentence is completed and the predicate token ((2;) has fired.

Ilustrated in figure 6.2 is a modified synaptic matrix with the in-
trinsic capability to organize a semantic network if it is given a series
of simple sentences. Initial input to the synaptic matrix is through a
set of autaptic word cells (W), each of which (if active) stimulates its
coordinate mosaic cell and, by means of an axon collateral, a paired
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Schematic of a semantic network. Open squares (designated W,) within priming field
are autaptic cells that act as lexical tokens. Each autaptic cell connects to a paired
mosaic cell (M) and, through an interneuron (not shown), to a paired filter cell (f). Dots
represent fixed excitatory synapses; short, oblique slashes represent fixed inhibitory
synapses; filled lozenges represent adaptive excitatory synapses. Reset neuron (—)
generates an inhibitory postsynaptic potential to reset all class cells when discharged.
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filter cell (f)) in the detection matrix. At the start of each sentence, all
W, are primed, enabling the word tokens in the sentence string to be
latched. At the completion of each sentence, the priming input is
interrupted and all W; stop firing. The repeated sequence of initiation
and interruption of excitatory priming of word cells occurs in phase
with the input and completion of successive sentences over any ex-
tended lexical message.

Suppose, in the printed sentence A tiger is a cat, articles are ignored
so that the first recognized character string is tiger, which fires W,
and the second recognized character string is is cat, firing W,. In this
case, the mosaic cell M; and the filter cell f; will discharge concur-
rently, causing an increase in the efficacy of the synaptic junction
between M, and f; in the detection matrix in accordance with the
learning principle. Then mosaic cell M, and filter cell f, will fire to-
gether, causing an increase in the transfer weight of their synaptic
junction. At the same time, the synapse connecting M; and f, will
also be modified because M; was continuing to discharge (stimulated
by the latched autaptic cell W;) when f, fired. In the imaging matrix,
the concurrent discharge of class cell ), and mosaic cell M; will raise
the efficacy of their synaptic link. After this bit of learning, if tiger
alone is presented as a stimulus, the response will be tiger (€2,) is cat
(Q,). If is cat is presented alone, it will evoke (), in the detection
matrix, which, in turn, will evoke M, in the imaging matrix, resulting
in the ), output tiger.

When the semantic network is queried, the discharge of any partic-
ular mosaic cell (M,) is the selected token of a word or phrase taken
as the subject of a sentence. The discharge of any particular class cell
(Q,) is the selected token of a word or phrase taken as the predicate
of a sentence—for example, “A trout (M,) is a fish (£2;).” If we were
to ask “What is a trout?” “a fish” would be one of a number of
proper replies. If the same question were put to a semantic network
previously presented with “A trout is a fish,” we expect a similar
response. That is, if M, (trout) is fired, then {; (fish) should fire.
Suppose we were to ask, “What is an example of a fish?” The re-
sponse “a trout” would be appropriate. In this case, the subject trout
is selected when the predicate fish is queried. In terms of the neuronal
structure of the semantic network, if Q (fish) is discharged, then M,
(trout) should fire.

But we would expect more of a neuronal mechanism that is to
serve as a semantic processor in the human brain. In particular, we
would expect such a processor to make sense out of combinations of
sentences. For example, suppose you were provided the information
contained in the following sentences:
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(1) A trout is a fish.

(2) A cod is a fish.

(3) A trout lives in freshwater.
(4) A cod lives in saltwater.

If you were asked to give an example of a fish, the responses trout
and/or cod would be appropriate. These could be computed from
sentences 1 and 2, where each sentence is treated independent of the
other. However, if you were asked to give an example of a fish that
lives in saltwater, the information contained in at least two of the
four sentences (2 and 4) would have to be combined and used in
such a way that the response cod is given. From a strictly logical point
of view, the fact that a trout lives in freshwater does not preclude
the case that it also lives in saltwater. But given the information
contained in these sentences and the form of the question asked, the
natural inference is that cod is the right answer and trout is wrong.

If something like this is accounted for by what happens physically
in the brain, then the semantic processor must somehow combine
and properly relate the information contained in all four sentences.
Something roughly corresponding to the following simple bit of rea-
soning must be taking place: A trout and a cod are both examples of a
fish, but I know only that a cod lives in saltwater, so cod is the right answer.
A semantic network organized by an augmented synaptic matrix can
generate “reasonable” inferences of this kind.

An Example of Performance

The following simulation provides an initial example of how the syn-
aptic matrix can perform as a self-organizing semantic network. The
neuronal mechanism illustrated in figure 6.2 constituted the pro-
cessing model that was simulated.

Synaptic changes were based on the same learning principles as
presented in chapters 2 and 3. The saturation limit (Lim) for the trans-
fer weights (¢) was arbitrarily set at a value of 2. All ¢ changes
reached the saturation limit during learning because in sentence pro-
cessing the number of coactive lexically tokened cells is relatively
small. Parsing of the words and phrases that composed the sentences
typed into the computer was accomplished by a program subroutine
that was not part of the simulation of the neuronal model. Thus,
input to the word cells (W) attached to the synaptic matrix was medi-
ated by an ordinary program for parsing character strings and linking
them to W cells rather than by a simulated neuronal mechanism for
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recognizing the actual visual patterns of the character strings. Simi-
larly, initiation and interruption of W cell priming were controlled by
a standard computer subroutine that responded to the initiation of a
sentence and the punctuation at the end of it. However, the essential
semantic mechanism for systematically organizing the relationships
among biological tokens of words and phrases was a simulation of a
dynamic neuronal structure (the augmented synaptic matrix).

For the purpose of simplifying the simulation program, the model
ignored the article strings 4, an, and the, as well as the verb is when
it learned its lexicon from the sentences presented. An is (a) relation-
ship was taken as the default characterization of a predicate link to
a subject whenever an assertion of relationship was required but was
not explicitly specified in the output of the semantic network; for
example, the output string trout fish was transformed by adding the
appropriate articles and the is (a) link to make the well-formed expres-
sion, “A trout is a fish.” Other predicate relationships were expressed
directly in the output of the semantic network as predicate phrases
(hyphenated in both input and output to facilitate phrase parsing);
for example, the output string “fish has-gills” required only the addi-
tion of the article to make the well-formed expression, “A fish
has-gills.”

The following sentences were presented to the neuronal model for
semantic processing (a space was left between the last word in each
sentence and the period to make it easier for the parsing program to
sense the end of the sentence and signal the interruption of W cell
priming):

(1) A TIGER IS A CAT .
(2) A TIGER HAS-STRIPES .
(3) A TIGER IS WILD .
(4) A TABBIE IS A CAT .
(5) A TABBIE HAS-STRIPES .
(6) A TABBIE IS A PET .
(7) A FLAG HAS-STRIPES .
(8) A FLAG IS AN ARTIFACT .
(9) A CAT IS A MAMMAL .
(10) A MAMMAL IS AN ANIMAL .
(11) A DOG IS A MAMMAL .
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(12) A DOG IS A PET .
(13) A DOG BARKS .

From this list of 13 sentences, the model automatically built a lexi-
con consisting of the following 12 items:

TIGER
CAT
HAS-STRIPES
WILD
TABBIE
PET
FLAG

. ARTIFACT
. MAMMAL
10. ANIMAL
11. DOG

12. BARKS

The fact that the number of items in the lexicon is many fewer than
the total number of words in the 13 stimulus sentences follows from
the fact that once a particular word or phrase has been learned, it is
no longer novel. The synaptic matrix normally learns a current input
(selectively tunes a new filter cell) only when it detects a novel stimu-
lus. Also, recall that the articles and the verb is were, for convenience,
arbitrarily ignored by the parser.

During the presentation of the stimulus sentences, synaptic
weights (¢) were changing automatically in accordance with the
learning principle. After all 13 sentences were typed in, the ¢ distri-
butions in the detection matrix and the imaging matrix were as repre-
sented in figure 6.3.

The semantic network was tested in two different response modes,
each appropriate to a different kind of query. In one test mode, the
network was asked to define a stimulus word that was the subject of
a sentence previously presented to it. In the second test mode, the
network was asked to infer the subject(s) of one or more stimulus
words that were the predicates of sentences previously presented.
When the network was required to define a subject, priming of W
cells was sustained, and each activated response token ({};) was as-
sumed to reafferent its word token as the next input to the
network—for example, g — Wy — M,;. When the network was re-
quired to infer a subject, priming of W cells was interrupted, and the
only continuing activation of the network was mediated by Q cell
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Figure 6.3

State of semantic network immediately after thirteen related sentences were presented
to it. Saturation level for synaptic weights (¢) = 2. Synaptic junctions without printed
weights are those that remained unmodified by learning and are at a uniform low
basal value.
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feedback through previously augmented synaptic junctions on its
mosaic cells—for example, Q5 — M,.

In the course of semantic processing, the subject of a sentence is
represented by the activity of a mosaic cell (M,), whereas a predicate
is represented by the activity of a class cell (€);). When the semantic
network is queried, parallel activation of multiple predicates in re-
sponse to a given subject can occur only when the synaptic weights
(¢) that control the respective rates of EPSP integration in Q cells
have the same value (the saturation limit Lim). Under such circum-
stances, it is possible for several class cells to fire together within
each () reset cycle.

Defining a Subject

After the 13 sentences were presented, the semantic network was
asked to define the words in its lexicon that corresponded to the
subjects in the sentences. The responses of the model are given
in the following listing of questions and answers (phrases in paren-
theses were not part of the model’s lexicon and are added for
clarification):

Question: (WHAT IS A) TIGER ?
Response: (A) TIGER (IS A) TIGER
(A) TIGER (IS A) CAT
(A) TIGER HAS-STRIPES
(A) TIGER (IS) WILD
(A) TIGER (IS A) MAMMAL
(A) TIGER (IS AN) ANIMAL

Question: (WHAT IS A) TABBIE ?
Response: (A) TABBIE (IS A) TABBIE
(A) TABBIE (IS A) PET
(A) TABBIE (IS A) CAT
(A) TABBIE HAS-STRIPES
(A) TABBIE (IS A) MAMMAL
(A) TABBIE (IS AN) ANIMAL

Question: (WHAT IS A) FLAG ?
Response: (A) FLAG (IS A) FLAG
(A) FLAG (IS AN) ARTIFACT
(A) FLAG HAS-STRIPES

Question: (WHAT IS A) CAT ?
Response: (A) CAT (IS A) CAT
(A) CAT (IS A) MAMMAL
(A) CAT (IS AN) ANIMAL
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Question: (WHAT IS A) MAMMAL ?
Response: (A) MAMMAL (IS A) MAMMAL
(A) MAMMAL (IS AN) ANIMAL

Question: (WHAT IS A) DOG ?
Response: (A) DOG (IS A) DOG
(A) DOG BARKS
(A) DOG (IS A) PET
(A) DOG (IS A) MAMMAL
(A) DOG (IS AN) ANIMAL

The semantic network’s responses to the queries are appropriate
given the original information (sentences) that it had learned; among
its responses to each query was the identity relation (“A TIGER IS A
TIGER”); and the model was able to make appropriate inferences
from the information provided. Despite the fact that it was not told
that a tiger is a mammal or that a tiger is an animal, it was able to
infer that if a tiger is a cat and a cat is a mammal and a mammal is
an animal, then a tiger is both a mammal and an animal. The same
kind of inferences were made about a tabbie. And the model inferred
from the fact that a dog is a mammal that it must also be an animal.

The reason that these inferences were made follows from the syn-
aptic structure endogenously organized in the course of learning from
the original sentences. When the word cell W; corresponding to the
character string “TIGER” was discharging, it evoked (through its
learning-enhanced synaptic junctions in the detection matrix) the dis-
charge of the following class cell tokens: (), (TIGER), (), (CAT), Q,
(HAS-STRIPES), and Q, (WILD). These, in turn, were assumed to
evoke their word tokens as reafferent stimuli to the synaptic matrix,
providing new inputs to the semantic network. In particular, for ex-
ample, indirect feedback from the active (), token (CAT) fired W,
(CAT), which fired M, (CAT), and this cell then fired {3 (MAMMAL)
(via fy in the detection matrix). The response MAMMAL was given
as part of the definition of TIGER though the system was not told
that a tiger is a mammal. Moreover, once the response MAMMAL
was made, the same kind of recursive process induced the discharge
of the O, token (ANIMAL). So ANIMAL was also given as a proper
response to the question, “WHAT IS A TIGER?”

A particularly important kind of synaptic change automatically oc-
curs in the semantic network when these recursive neuronal events
take place. Since the original subject of the query is latched in an
autaptic token in the array of word cells, its coupled mosaic cell re-
mains active and forms an enhanced synapse with each of the filter
cells discharged in the inference process. A predicate response that
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was originally produced by a chain of inference is now directly medi-
ated by a new synaptic link between neuronal tokens of subject and
predicate. The self-restructuring of the synaptic matrix that occurred
during the course of querying it is revealed in figure 6.4. The syn-
apses marked by asterisks in the figure are the newly formed token-
to-token gateways in the semantic network.

Inferring a Subject

In the previous test, the semantic network was asked to define or
describe a subject: WHAT IS A TIGER? WHAT IS A FLAG? The follow-
ing test required the semantic network to infer an appropriate subject
from a given predicate or a set of predicates. The state of the synaptic
matrix corresponded to figure 6.4. Instead of initiating each query by
discharging a selected word cell as in the previous simulation, class
cells that represented selected predicate tokens were fired either sin-
gly or in combinations. Thus, when the model was asked “(WHAT)
ANIMAL (IS) WILD? Q,, (ANIMAL) and Q, (WILD) were automati-
cally discharged together. Since the sentences that provided the origi-
nal information for the naive semantic network contained no plural
words, the following queries could be put only in singular form
(phrases and letters in parentheses were not part of the model’s lexi-
con and are added for clarification):

Question: (WHAT ARE SOME) ANIMAL(S)?
Response: (A) TIGER

(A) CAT

(A) TABBIE

(A) MAMMAL

(AN) ANIMAL

(A) DOG

Question: (WHAT) HAS-STRIPES?
Response: (A) TIGER
HAS-STRIPES
(A) TABBIE
(A) FLAG

Question: (WHAT) PET HAS-STRIPES?
Response: (A) TABBIE

Question: (WHAT ARE SOME) PET(S)?
Response: (A) TABBIE

(A) PET

(A) DOG



Building a Semantic Network 111

®
()]
2 -
- 3 E T
f. w = — 2
b o o o= € £ =
o - m T O~ o o = o
28 2%38R2C:28¢8 32
Wi123456789101112
]
M
j . Lo . Lo
tiger 1
4 4
cat 2 1
—
has stripes || 3
s
wild 49
L] P 4 & 4
tabbie 5 ¢
=
6 ¢
pat =
flag 7 *
b
artifact 8 ¢
-
mammal 9 & 2
p—
| 10
o v <
&g Y
barks 1 2
A~ T f
\L v \L D20 2 4 \L \L \L W \L v
Prime Q
Figure 6.4

State of semantic network after it had been “asked” to define the subjects of the
presented sentences. New synaptic changes were automatically induced in the course
of responding to queries. The newly strengthened synaptic junctions are marked by
an asterisk.
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Question: (WHAT) HAS-STRIPES (AND IS AN) ARTIFACT?
Response: (A) FLAG

Question: (WHAT) ANIMAL (IS) WILD?
Response: (A) TIGER

Question: (WHAT) ANIMAL (IS A) PET (AND) BARKS?
Response: (A) DOG

The semantic network that was endogenously organized within
the synaptic matrix was able to infer the appropriate subjects on the
basis of either simple or complex predicates: an animal versus an ani-
mal that is a pet and barks. And this was accomplished by plausible
neuronal mechanisms and architecture.

The reason that the network behaves as it does can be seen in the
synaptic structure of figure 6.4. The greater the number of predicate
qualifiers ({);) that are “true” of any given subject (W,), the more
learning-enhanced synapses will activate its paired mosaic cell (M)
when those predicate tokens are fired during a query. It follows that
the most appropriate subject tokens (M) will exhibit response laten-
cies shorter than those of less appropriate tokens. When a query
permits more than one subject as a correct response, all proper
M cells are discharged in parallel because each has an equal num-
ber of active synapses (see the response to “WHAT ARE SOME
ANIMALS?”).

Linking the Semantic Network to the Real World

The semantic network model seems to provide a neuronal mecha-
nism that can adaptively organize a lexicon and instantiate logical
relationships among lexical items. When it is questioned, it can re-
spond appropriately on the basis of inferences that it makes from
previously presented propositional information. But when it asserts
that “A TIGER HAS-STRIPES,” the word TIGER and the phrase
HAS-STRIPES have no referents other than the character strings that
evoke their neuronal tokens. Taken as an isolated module, the se-
mantic network can exhibit logical processing of its physical symbols
(tokens), but it can provide no information about their meaning with
respect to events in the real world (see Johnson-Laird, Herrmann,
and Chaffin 1984).

An appropriate reciprocal mapping is required between the synap-
tic matrix for pattern recognition at the sensory input level and the
lexical tokens within the semantic network. This mapping should
provide a neuronal structure wherein a sensory pattern evokes its
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proper lexical token and the discharge of that token can evoke an
afferent image of that sensory pattern. Moreover, the synaptic gate-
ways that instantiate such a mapping between separate processing
modules must be able to evolve adaptively in the context of novel
sensory environments and new lexical items. A neuronal system that
can accomplish the desired mapping for visual-semantic processing
is shown schematically in figure 6.5. This architecture is similar to
the connectivity scheme illustrated in figure 3.5. It can be adaptively
constructed by the backward-chaining mechanism (described in fig-
ure 3.6) in the following way.

Mosaic cell analogs (images) of objects at the level of the sensory
matrix are mapped to particular object tokens ({};), which provide
input to the next processing stage, the synaptic matrix for lexical
assignment (designating objects and events by the words that are
conventionally used to refer to them). Since, during the learning of
a lexical assignment, an object token must be active concurrently with
the discharge of its proper lexical token, the axon collateral of the
discharging lexical token ({2’) that feeds back to the array of object
tokens (£;) will selectively strengthen its synapse with just that object
token that was coactive with it (coactivity of ; and (2)). This provides
a proper backward mapping from lexical tokens at the stage of lexical
assignment to object tokens at the earlier stage of pattern recognition.
The same process of backward selection of the proper synaptic cou-
plings occurs between the matrix for lexical assignment and the se-
mantic network because of the coactivity of input tokens from the
former and feedback from the output tokens of the latter during the
course of building the lexicon. In this fashion, the neuronal architec-
ture shown in figure 6.5 is adaptively constructed as the lexicon is
learned and lexical assignments are made. When the semantic net-
work asserts that “A TIGER HAS-STRIPES,” it not only states a prop-
osition; it simultaneously evokes internal afferent patterns (images)
that are analogs of the objects to which the proposition refers.

When synaptic matrices are organized in this way, the perception
of either a specific object in the environment or the character string
that names the object will evoke the same lexical tokens in the brain.
Conversely, discharge of a lexical token can evoke an image of both
its associated object and the object’s name. And when lexical tokens
are evoked by sentential stimuli, they are automatically related to
each other in a logical fashion by selective synaptic coupling within
the semantic network. Notice, however, that at the level of the se-
mantic network, some of the components of sentential stimuli could
be pictures as well as words, since each (if represented at all) is
represented at this stage by its appropriate lexical token. These to-
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Flow diagram depicting forward and backward chaining of ) tokens. Adaptive map-
ping binds lexical tokens to appropriate sensory images (including lexical strings).

kens constitute a common conceptual representation for both images
and words (Banks and Flora 1977, Guenther and Klatsky 1977, Kroll
and Potter 1984, Potter and Faulconer 1975). Thus, the proposed
visual-lexical-semantic mechanism behaves in a manner that is con-
sistent with the experimental finding that sentence processing can
work directly with internal representations provided by pictured ob-
jects as well as with words (Potter et al. 1986).

The Structure of Representation

Fodor and Pylyshyn (1988) have argued persuasively that “mental
representations need an articulated internal structure.” The proper-
ties of the neuronal system suggested here satisfy the requirement
for articulated representational structures in a number of ways. First,
at the stage where exteroceptive stimulus patterns are learned, filter
cells are fully tuned in one exposure to a stimulus. This means that
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the strength of association between any arbitrary current stimulus
and any given class cell token depends on only the correlation be-
tween the constituent structures of the current stimulus and the
exemplar to which the mediating filter cell was tuned; it is not
confounded by the frequency of stimulus occurrence. Second, while
individual tokens do not possess constituent structure, they system-
atically evoke images of their referents (sensory analogs or subsets
of other tokens), which can be structurally complex and are decompos-
able into constituent parts having their own semantic properties. Fi-
nally, individual tokens can be activated in combinatorial fashion so
that cognitive processing is influenced by the joint effect of separate
tokens within a structured representation (as in the query, “What
has stripes and is an artifact?”).

Moreover, given the capability of retinoid mechanisms to assem-
ble complex, organized representational structures from successive
inputs of simpler parts, a visual-lexical-semantic system that incorpo-
rates such mechanisms can, in principle, meet the challenge of pro-
ductivity put by Fodor and Pylyshyn (1988). A system of this kind
can not only represent veridical events, but it can inventively synthe-
size novel images (Trehub 1977, 1987) and sentences. Novel produc-
tions can then be projected to synaptic matrices to be learned and
stored as newly tuned filter cells in an expanding long-term memory.

In the simulation presented in this chapter, a semantic network
was queried by an exogenous source (the tester). Such queries can
also be generated endogenously by the appropriate discharge of lexi-
cal tokens (self-query). In this way, the neuronal network can moni-
tor the semantic implications of lexical communications in an on-line
fashion without mediation or prompting from an outside source.

The communications subject to semantic processing can be self-
generated sentences, as well as the lexical productions of others.
Because lexical tokens are systematically bound to events in the real
world, inferences drawn by the semantic network can provide infor-
mation on which to base reasonable plans of action. These plans, in
turn, can be expressed and learned as new lexical productions—
tokened representations of action schemes that are subject to elabora-
tion and interpretation within the semantic network.





