Chapter 3
Learning, Imagery, Tokens, and Types: The
Synaptic Matrix

An underlying premise of this book is that the cognitive brain consists
of many special-purpose mechanisms synergistically organized in in-
tegrated networks. The first multineuronal mechanism that we will
consider is a key processing module called a synaptic matrix (Trehub
1967). It is a putative brain mechanism with the capacity to learn and
classify complex input patterns, store them in long-term memory,
and recall images of them in the absence of external stimulation or
when only fragments of them are presented as input. It is a self-
organizing neuronal implementation of a parallel, adaptive comb fil-
ter that maps large input vectors onto unitary connectively labeled
output lines (axons) and selectively maps these output lines onto
correlated state vectors that are homologous with learned inputs
(Trehub 1975a, 1977, 1987).

In the schematic drawing of a synaptic matrix shown in figure 3.1,
there are nine afferent input lines (S;) and five output lines (€2,). In the
human brain, a single synaptic matrix may have tens of thousands of
axonal inputs and hundreds of thousands of outputs. Two subscripts,
i and j, are used in figure 3.1 to index the input vector S because, in
this case, it is assumed that the input neurons map from a two-
dimensional transducer array. Inputs S; are in discrete point-to-point
synapse with a second set of afferent neurons, called mosaic cells
(M). The axon of each mosaic cell is in parallel adaptive synapse with
all members of a set of cells in the detection matrix, which are called
filter cells (f). Each filter cell is in discrete synapse with an output
neuron called a class cell (). The axon of each class cell bifurcates,
sending a collateral back in adaptive synapse with the dendrites of all
mosaic cells (M) in the imaging matrix. Finally, an inhibitory neuron
(marked —) receives as its input the axons of all class cells and, in
turn, sends its axon in parallel synapse to the dendrites (or cell bod-
ies) of all class cells. This inhibitory cell is called a reset neuron.

I
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Schematic of a synaptic matrix. Afferent inputs are designated S;, and mosaic cells are
designated M. Dots represent fixed excitatory synapses; short oblique slashes represent
fixed inhibitory synapses; filled lozenges represent adaptive excitatory synapses. Reset
neuron (—) generates an inhibitory postsynaptic potential to reset all class cells when
discharged. Given any arbitrary input, the class cell coupled with the filter cell having
the highest product sum of afferent axon activity and corresponding transfer weights
will fire first and inhibit all competing class cells.
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Learning and Pattern Recognition

For the purposes of illustration, let us assume a minimal adaptive
system in the visual modality. There is a retina with nine discrete
receptor cells arranged in a two-dimensional 3 X 3 array. Each recep-
tor cell connects to an afferent neuron, which is indexed by the posi-
tion of its associated receptor in the retinal array. We can represent
this biological index by using retinotopic two-dimensional coordinate
subscripts as index labels. Thus, each afferent neuron in figure 3.1 is
designated S; where ij represents the retinotopic coordinate of its
associated retinal cell. Let us also assume that center-surround inhibi-
tion (Kuffler 1953) and threshold properties at the retinal layer and
lower visual centers result in the extraction of a binary-valued contour
transform of the light intensity distribution caused by an image falling
on the retina. Each afferent neuron discharges (activity = 1) if an
edge is detected at its associated retinal locus; it remains silent (activ-
ity = 0) if an edge is not detected at its retinal locus. This array of
edge detection signals composes the afferent excitation pattern (input
vector) on the mosaic cell array (M). Taking the contour transform of
the light-intensity distribution on the retina as input to the synaptic
matrix is consistent with the recent experimental finding of Bieder-
man and Ju (1988) showing that initial access to a mental representa-
tion of an object can be modeled as a matching of an edge-based
representation.

At some early stage of maturation, the synaptic matrix becomes an
effective adaptive brain mechanism. ATF and DTF are produced in
its mosaic cells and filter cells, and ATF alone is produced in its class
cells. With the production of the substances essential for synaptic
plasticity, transfer weights (¢;) can be modified by afferent excitation
and sustained at their new levels. In this process of learning, the
value of ¢ at each synapse will be set in accordance with equation 2.3,

G = b+ Splc + kN7,

b—Lim
where the parameters b, ¢, and k are subject to the loose constraint b
< ¢ <<k

Before any learning has occurred, all ¢ will be small; taking visual
learning as the example, an image falling on the retina would nor-
mally produce relatively feeble, infrequent, and random firing of filter
cells. If, however, cells in the synaptic matrix are positively biased
by arousal (excitation from the reticular activating system), then
added visual stimulation can induce a level of activity in some filter
cells that exceeds the threshold © for ATF-DTF interaction. In this
case, any filter cell (f;) receiving sufficient excitation from a retinal




40  Chapter 3

input pattern (pattern A) via the mosaic cell array will undergo an
effectively stable increase in ¢ at those of its synapses that intersect
the afferent firing pattern (A) in the detection matrix. After this has
happened, since the products of afferent stimulus units (S;) and their
corresponding synaptic transfer weights ($;) are integrated in each
filter cell (equation 2.1), whenever pattern A is presented, f; will fire
- at a higher frequency than other filter cells in the detection matrix
because its rate of increase of EPSP, given A, will be higher than that
for any other filter cell that has not been conditioned by the pattern
A (expression 2.2). If uniform rates of integration and thresholds
of discharge in the following class cells are assumed, the class cell
connected to f; (,) will fire before any other (); in the matrix output
array because its spike input frequency will be higher than any other.
In effect, this class cell (€2;) represents the biological name for the
learned pattern A. Thus, relative spike frequency on labeled lines
(class cells) is the effective code in this neuronal system.

The first class cell to fire (in this case, {);) will discharge the inhibi-
tory reset cell (—), which will reset the integration level of each neu-
ron in the entire class cell array before EPSP in the other class cells
can reach the firing threshold. The same process of (), discharge and
cell reset will recycle continuously as long as the same stimulus (in
this case, A) is present (or until the more active cells fatigue). In this
fashion, any given visual pattern is identified at the neuronal level
by the particular class cell it discharges. If there were no reset mecha-
nism, all class cells in the detection matrix would continuously inte-
grate EPSP and would reach their individual firing thresholds at
random moments independently of the input pattern present at the
time.

Imagery

Notice in figure 3.1 the bundle of axon collaterals from the set of
class cells (€2;) that courses back to form adaptive synapses with the
dendrites of all mosaic cells in the imaging matrix. When the visual
stimulus A is presented, mosaic cells responding to the afferent input
of A will discharge, thus firing the appropriate filter cell (f;) at the
highest frequency in the detection matrix and causing its paired class
cell (Q,) to fire. The transfer weights (¢;) of the adaptive synaptic
junctions between the active €, collateral and mosaic cells (M) that
are not discharging in the presence of stimulus A will remain un-
changed, but those adaptive synaptic junctions on the mosaic cells
that are firing (as afferents responding to the input pattern A) will be
modified in accordance with equation 2.3. Synaptic transfer weights
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between the class cell {),, and the mosaic cells will therefore be selec-
tively increased for the M pattern A in the imaging matrix. After this
synaptic change has occurred, if ), is fired (addressed), by either its
associated filter cell (f;) or any other input, it will evoke the afferent
firing pattern on the mosaic cell array that is normally evoked by A,
even when the stimulus A is not present. In this way, by means of
automatic, selective synaptic weighting in the imaging matrix, the
neuronal condition is established for retrieving, in the absence of
retinal stimulation, an entire afferent pattern previously coded by a
particular class cell. The capacity to recreate a specific discharge pat-
tern on the mosaic cell array in the absence of a corresponding retinal
stimulus provides one of the neuronal mechanisms for human imagi-
nation (Kosslyn 1980, Sheikh 1983, Shepard 1978, Trehub 1977).

Since only a single class cell collateral is normally active at any
given time during the discharge of mosaic cells in the array, the
reduction of free DTF in each active mosaic cell is minimal when an
image is learned. Thus, a single mosaic cell can participate in the
adaptive construction of many different visual representations in the
imaging matrix.

An Example of Performance

Following is a simple example of how the synaptic matrix with input
from a 3 x 3 cell retina performs the task of learning, recognizing,
and imaging four different stimuli. In this simulation, the saturation
limit (Lim) was set at a value of 6 for filter cells in the detection matrix
and at a value of 3 for mosaic cells in the imaging matrix. It was
assumed that all active afferent lines (S;) carried uniform excitation.
Inputs were designated 1 for an active input line or 0 for an inactive
line. Parameters in the learning equation (equation 2.3) were arbi-
trarily set as follows: b = 1, ¢ = 2, k = 10. For simplicity of illustra-
tion, stimuli are designated by numbers corresponding to the order
in which they were presented and learned, and each filter cell-class
cell couplet is indexed by the pattern that modified it. Figure 3.2
shows the distribution of synaptic transfer weights on each adaptive
neuron in the detection matrix and the imaging matrix (rounded to
the nearest integer) after each stimulus was presented one time. Filter
cell 5 has not been modified and is available for learning another
pattern because its store of free DTF has not been depleted and re-
mains at its maximum level.

After the four stimuli (vertical bar, square, horizontal bar, and
cross) were learned, the synaptic matrix was tested for recognition
of each of the stimuli. Figure 3.3 shows the relative frequency of
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Synaptic matrix showing synaptic transfer weights after four different stimuli have
been learned. The distribution of transfer weights in the detection matrix reflects a
peak tuning of each filter cell to one of the input patterns. If any class cell is discharged,
the distribution of transfer weights in the imaging matrix can evoke a pattern of excita-
tion on the mosaic cell array that corresponds to the stimulus originally mapped to
that class cell.
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Bar graph of relative discharge frequency for each filter cell in the synaptic matrix
shown in figure 3.2 when each of the four stimuli is presented after all have been
learned. The cell showing maximum output in response to the stimulus presented has
an asterisk above it. Shapes next to bars in graph identify both the stimulus presented
on the trial and the filter cell that originally learned the stimulus.
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discharge in all filter cells (constituting input to each of their coupled
class cells) for each of the stimuli. Activity is maximum for the appro-
priate filter cell in all presentations, resulting in the discharge of the
correct class cells (figure 3.2).

Notice that stimulus 4 (the cross) completely includes two other
stimuli that had been learned (vertical bar and horizontal bar), yet
the system discriminated the cross and gave the proper recognition
response. And the vertical and the horizontal bars, both fully in-
cluded in the cross stimulus, were also correctly recognized. The
problems of normalization discussed in chapter 2 are remedied by
the learning mechanism implicit in equation 2.3. The quasi-
normalized DTF contribution and the small, fixed ATF contribution
have a joint effect on synaptic transfer weights that gives the detec-
tion matrix the ability to make appropriate discriminations even when
a learned stimulus is a substantial integral part of another learned
stimulus.

Turning to figure 3.2 again, examination of the pattern of modified
transfer weights in the imaging matrix reveals that discharge of any
arbitrarily chosen elass cell will evoke a distribution of excitation over
the array of mosaic cells that corresponds to the afferent pattern sig-
nalled by that class cell. Since each mosaic-cell dendrite receives an
active input from only one excited class-cell collateral at any given
time, depletion of DTF will be minimal. Thus, each mosaic cell can
adaptively change its synaptic weights to accommodate many subse-
quent image representations (memories).

Operating Characteristics of the Synaptic Matrix

In addition to its primary processing capabilities, other properties of
the synaptic matrix deserve particular attention. An early simulation
test of the model (Trehub 1975a) presented nine different visual pat-
terns through a 5 X 5-cell retina. To satisfy the constraint b < ¢ <<k,
the following values were arbitrarily assigned: b = 1, c = 5, k = 100.
After all the patterns had been presented once during the learning
phase, each was used in repeated stimulus-response trials to test
recognition. Each stimulus was either an intact figure, as originally
learned, or a degraded version of the original figure formed by ran-
domly eliminating approximately 40 percent of the pixels forming the
pattern (figure 3.4).

The upper half of figure 3.4 shows that when the learned patterns
were presented intact in the test phase, response was 100 percent
correct. The robustness of performance of the synaptic matrix is illus-
trated in the bottom half of figure 3.4, which shows what happens
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Results of simulation test. Numbers at top identify the nine stimuli that were learned.
Notice the error (indicated by asterisk at bottom) made in response to the randomly
degraded cross.

when the matrix must recognize pattern fragments having approxi-
mately 40 percent of the originally learned pattern randomly omitted.
In this highly degraded condition, only one error of classification
is committed—mistaking the fragment of a cross for a vertical bar.
Inspection of those fragments of the cross presented as a stimulus
reveals how intuitively appropriate the erroneous response was. Re-
peated tests with randomly generated fragments of the original stim-
uli (approximately 60 percent of each learned prototype) yielded
correct responses in 92 percent of the tests. This early simulation
demonstrated that the synaptic matrix performs well in the presence
of subtractive noise. (Other simulations to be presented demonstrate
robust recognition performance in the presence of both additive and
subtractive noise, as well as when stimuli are confounded by the
superposition of learned patterns.)

The synaptic matrix operates on the basis of ordinal logic rather
than point logic. When a stimulus is presented, the sum of the prod-
ucts for mosaic cells and their corresponding synaptic transfer
weights on the filter cells (f,,) does not have to be any particular value
(a point criterion) for the mechanism to respond appropriately. All
that is required is that the sum of these products for a correct filter
cell be greater than the sum for each of the other competing filter
cells (an ordinal criterion).

The model has direct implications for our understanding of what
a concept might be in terms of brain function. The detection matrix
does not compute a single prototypical distribution of synaptic trans-
fer weights for a given class of objects. Thus, there is no representa-
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tion of an “average” pattern that might be taken as a person’s concept
of an object. Rather, in the course of human learning, filter cells may
be tuned to different exemplars of a single object class. Since the
decision about class (category) membership is made on the basis of
competitive, first-order pickoff among the possible class cell outputs,
the system exhibits robust intrinsic generalization and can, in princi-
ple, assign proper category membership to many objects that it has
never learned as exemplars of their class. This is true because the
mechanism operates on the principle of ordinal logic, which ensures
that even in the absence of a good match between an input pattern
and its appropriate filter cell, if there is no better match with an
inappropriate filter cell, the correct recognition response will be
given. The effect of this operating principle is to make the system
appear as if it is responding on the basis of the fit of each stimulus
against a set of averaged internal standards (Estes 1986) when, in
fact, there are no averaged standards. It will be seen later that when
the bare synaptic matrix is augmented by other putative brain mecha-
nisms, the occurrence of a poor match against all filter cells in the
detection matrix results in a signal that the current stimulus is novel,
and if the ecological and motivational context warrants it, the level
of arousal will increase and the stimulus will be automatically learned
(Trehub 1977).

With respect to the distinction between concept and category, one
might say (from the biophysical standpoint) that a concept consists
of that subset of exemplar-tuned filter cells together with their cou-
pled class cells that has at least one common output effect distinct
from the output effects of any other subset in the detection matrix.
For example, the presentation of the stimulus object A will maximally
stimulate one of the cells in the subset of filter cells that defines the
concept of A-ness. The discharge of its coupled class cell will cause
the output signal (A), which then defines the category of the stimulus
instance. A proper category signal can be any arbitrary but distinct
and stable correlate of the class cells that evoke the signal.

The synaptic matrix does not employ feature extraction or feature
list checkoff in the learning and subsequent recognition process. For
instance, in the examples presented, learning the cross did not re-
quire that its constituent features of a vertical and horizontal bar be
isolated and learned as separate representations. Nor did the recogni-
tion of the cross require that there be discrete representations of the
bar features in the detection matrix. The excitation pattern of a stimu-
lus on the mosaic cell array was learned holistically and represented
holistically in the distribution of synaptic transfer weights on the filter
cells.
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The competence of this theoretical model suggests that natural pat-
tern recognition can proceed very well without prior feature extrac-
tion, as an example at the level of insect behavior shows. In a
carefully controlled study that explored how bees remember the
shape of flowers, it was found that bees apparently store flower pat-
terns as “low-resolution eidetic images” (Gould 1985). But this does
not imply that organisms are necessarily incapable of feature extrac-
tion. The issue of what constitutes a feature and how it might be
extracted from a complex visual stimulus is still quite murky (Pinker
1984). For example, study of the visual system in lower vertebrates
suggests that they respond best to simple stimuli, such as small,
horizontally elongated blobs in motion (Ingle 1968). In such cases,
however, it seems more appropriate to ascribe the feature selectivity
to an absolute constraint on the visuo-motor system imposed by
primitive, relatively simple, pretuned filtering mechanisms that are
suited only to the basic survival needs (prey catching, avoidance of
predators). It is assumed that in the higher mammals or at least in
humans, mosaic cell excitation can be limited to salient parts of a
complex object, and these pattern parts can then be learned sepa-
rately as constituent features of the larger object. In this way, filter
cells can be constructed that detect and classify not only whole objects
and scenes but their salient components as well.

In perceptual situations where immediate discrimination of a par-
ticular object on the basis of holistic filters is difficult, analytic de-
tection of the previously learned parts of that object can assist the
recognition process—for example, recognizing a semirigid object,
such as the human body. In this case, isolation of a relatively rigid
part, such as the head, enables the viewer to infer the whole figure
from a recognized component.

To the extent that features may be regarded as important aspects
of shapes that deserve special weighting, this approach provides in-
trinsic weighting of especially significant object parts on the following
bases:

1. Parts that are invariant aspects of objects over a variety of
perturbations will, on average, be represented in the transfer
weight distributions of more filter cells than will noninvariant
parts.

2. Parts of objects that have particular ecological relevance or
utility (the handle of a cup) will naturally tend to be the focus of
perceptual orientation, and more exemplars of such parts (fea-
tures) will tend to be represented in the detection matrix.

3. If experience teaches that an ambiguous stimulus can be re-
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solved by determining the presence or absence of a particular
part, the part that solves the problem will tend to be isolated and
learned as a useful feature.

Thus, in this model, recognition by feature detection is a special case
within the general pattern recognition process.

Another significant property of the synaptic matrix is that its reac-
tion time depends on the relationship between the current stimulus
and the learning experience of the matrix. Because class cells integrate
filter cell output over time and fire when their integrated EPSP
reaches threshold, the reaction time for output from the detection
matrix is a monotonic function of the correlation between the current
input pattern and the best-fitting ¢ representation among the filter
cells that have been modified by previous learning. Thus, the more
familiar a stimulus is, the faster will the system respond.

Propositional and Analogical Representation

If we examine the physical state of a synaptic matrix after a stimulus
pattern has been learned, we can characterize the modified distribu-
tion of synaptic weights as a latent representation, a deep structure
that determines the subsequent surface behavior of the system. In
the detection matrix, this synaptic structure results in the selection
of output lines (class cells) that are selectively contingent on particular
stimulus properties. In effect, the discharge of a class cell that is
evoked by a pattern of activity (5) in the mosaic array is the physical
equivalent of a propositional representation in the simple form S
(noun) is p (predicate) (see Jackendoff 1987). It is comparable, for
example, to the assertion that a stimulus object A belongs to the
specific category (), or that B belongs to the category (y,. Discharge
of any particular class cell can also be considered as a physical symbol
(Derthick and Plaut 1986, Newell 1980) or token of the object (more
accurately, of the object’s proximal neuronal analog in the imaging
matrix) to which its coupled filter cell has been synaptically tuned.
On the other hand, when the imaging matrix is excited by the
input of a class cell collateral, the deep distribution of synaptic
weights causes a surface response on the mosaic array that is an
analog of some particular stimulus object. In effect, activation of a
specific physical predicate evokes an analog representation of its
proper subject—somewhat like depositing a monetary token in a slot
and getting back its face value in currency. The ability of the synaptic
matrix to operate interactively and with facility in the domains of
both analogical and propositional representation provides an efficient
Dbiological mechanism for higher-order cognitive processing.
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Flow diagram of three synaptic matrices in a feedforward-feedback network. Parallel
inputs from two different sensory modalities. IM = imaging matrix; D = detection
matrix.

Networks of Matrices

Up to this point, we have considered the basic capabilities of the
synaptic matrix as a single neurocognitive module. Other important
properties become evident when multiple synaptic matrices are orga-
nized in complex networks with parallel, feedforward, and feedback
connections.

Figure 3.5 is a flow diagram illustrating three interconnected synap-
tic matrices. In this example, two separate modules (1 and 2) receive
parallel volleys of stimulation from their respective sensory input
modalities S;and Sj; (vision and audition). The class cell outputs ({;
and Q') of these matrices, in turn, constitute an input vector to a
third synaptic matrix that lacks direct access to the sensory arrays.
After learning has occurred, each token (); and €}/ can directly evoke
an afferent image of its associated sensory pattern, but £}/ can directly
only evoke a representation of its associated token inputs in its mo-
saic cell array. However, if associative excitatory collateral connec-
tions from class cells Q! to Q; and Q] are learned, output from the
synaptic matrix that does not have access to sensory input (module
3) can indirectly evoke the sensory images originally associated with
the class cells in sensory modules 1 and 2. In networks of this kind,
the dendrites of class cells would have adaptive synapses just as
mosaic cells do and would receive axon collaterals as feedback from
the synaptic matrix at the next higher level (figure 3.6). Thus, a back-
ward chain of selective excitation from higher-level class cells to
lower-level class cells can elicit neuronal analogs of the appropriate
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Schematic of a synaptic matrix in a network with feedback from a higher level to a
lower level through adaptive class cells.
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environmental stimuli. That analogs of endosomatic stimulus states
(kinesthetic, somasthetic, vestibular) can also be recovered in the
same fashion is implicit in this account.

The type-token distinction (Jackendoff 1985) can be roughly cap-
tured in a natural way in synaptic matrix networks of this kind. Class
cells that signal particular exemplars of an object type (as in the sen-
sory modules) can be taken as tokens of those objects, whereas class
cells that fire in response to the input of any of a particular subset of
class cell tokens are physical signals of the subset, and in effect, their
activity announces a type name in the biological system. As synaptic
matrices are cascaded, class cells can signal types of types (figure
3.7). Thus, neuronal representations at increasingly higher levels of
abstraction can be instantiated in these putative brain networks. For
example, in a feed-forward chain of synaptic matrices, my pet cat
named Duffy can be represented by a series of distinct class cell
signals as follows: Duffy (sitting on the floor in front of me) — (),
(Duffy) — Q, (cat) — Q; (mammal) — (), (animal) — {5 (animate).
Moreover, given the backward-chaining mechanism illustrated in
figure 3.6, excitation of any class cell in the chain can evoke ap-
propriate subordinate representations as well as those that are
superordinate.

Selective Association of Input and Output

So far, we have considered only models in which synaptic modifica-
tion (learning) occurs as a result of an increase in arousal (excitatory
bias) on all adaptive cells in the synaptic matrix. Since this kind of
neuronal priming is diffuse, which particular filter cells will happen
to fire in the presence of a stimulus and thus undergo a change in
their distribution of synaptic transfer weights is a matter of chance
(though the specific input-output mapping, once established, be-
comes a systematic property of the matrix). However, in order to
achieve adaptive goals, it is necessary that particular stimuli be
mapped onto just those output lines (class cells) that can evoke (either
directly or indirectly) the appropriate behavioral responses.

Let us say that I already have vocalization routines in my motor
repertoire that allow me to utter the words Duffy and cat. The problem
is to forge privileged excitation paths from the retinal excitation pat-
tern of Duffy (object) through its class cell token (£2;) to a cell that
gates the utterance Duffy and from the first token (Q;) through an-
other class cell (Q,, at a higher level of abstraction) to a cell that gates
the utterance cat. The desired selection of associations will occur if,
instead of initiating diffuse priming (general excitatory bias) of filter
cells (f}), only those f; that are coupled to the appropriate class cells
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are primed (in this case, f; and f,). This can be accomplished if there
is a collateral axonal-input line leading from each cell that gates a
specific motor routine to a discrete filter cell in a synaptic matrix that
is an adaptive processor of the retinal input. Figure 3.8 shows how
the basic synaptic matrix is augmented to learn this kind of stimulus-
response selectivity. In these networks, the initiation of a particular
behavior in the presence of a particular stimulus (or a token of it)
will induce a privileged excitation path from a class cell token of the
stimulus to its coactivated behavior. Thus, if I say Duffy (vocally or
subvocally) when I see the cat that is to be my household pet, this
animal is labeled in my brain in two different ways: by a biological
“name” (token (),) and by a specific efferent routine that can generate
the signal utterance Duffy. It is a specific claim of the model that all
learned sensory/token-motor behaviors are mediated by action-
dedicated neuronal loops of the form G; — f; = Q, — G,. After the
filter cell in such a loop has been tuned to a particular input, any
subsequent instance of this input can evoke the appropriate action.

Putting Motivation into the Network

In the previous examples, we considered two principal kinds of in-
puts to the synaptic matrix: exteroceptive sensory stimuli and class
cell tokens of such stimuli. But motivational states produce specific
interoceptive stimuli, and these can be processed in the same way
as exteroceptive inputs. Thus, for example, an interoceptive vector
that corresponds to the physiological state of hunger can be coded
(mapped) to a class cell in a detection matrix, and activation of this
cell can serve as a token in subsequent adaptive associations (Trehub
1970). For example, say that a hungry person wants to eat. Because
there must be food available to eat, the joint tokens of hunger (£,)
and available food ({2,) must be activated to initiate the motor subrou-
tines that constitute the act of eating. The double ©,Q, tokens could
constitute a pattern that is mapped to (2; in a sensory motor loop
that gates the action of eating. In this case, (), alone would be in a
sensory motor loop that gates the look-for-food subroutines (go to
the refrigerator, open the door, take an apple). After completion of
the search behavior induced by (), the sensory input evoked by the
apple would activate (),, the condition for discharge of {2; would be
established, and the apple would be eaten.

This is a glimpse of how motivational and sensory tokens can be
processed as joint patterns. As the structure and dynamics of the
model are elaborated, we will see that high-level, goal-directed be-
havior can be initiated and adaptively controlled in networks of
synaptic matrices.




