Chapter 10

Learning and Recalling Canonical Visual Patterns

Various aspects of the proposed brain model have been simulated to
provide initial assessments of the basic competence and operating
characteristics of the component mechanisms. The tests described in
this chapter involve the synaptic matrix, either in isolation or working
together with some of the accessory circuits and the retinoid system.
All of the stimuli used in these tests were visual objects with nonvary-
ing shapes. They were projected to a simulated retina not only in
pristine form but also presented as multiple objects in superposition,
degraded by visual noise, or rotated away from the angular orienta-
tion at which they had been learned.

Pattern Recognition and Associative Sequential Recall

One of the more intriguing aspects of human cognitive activity is that
of associative sequential recall. The stream of passive thought is often
not constrained by the principles of deduction or the application of
rules of inference; the succession of conscious impression seems to
proceed rather along analogical and metaphorical links. A given situ-
ation may evoke a wide variety of imaginal recollections. Some may
be obviously similar to the immediate stimuli; other recalled images
may be so dissimilar to the initial perception as to be surprising and
seemingly completely fortuitous. Useful insights and creative ideas
often occur without our awareness of logical precession (see Shepard
1978 for an extended treatment of this topic). The following simula-
tion yielded results suggesting that the synaptic matrix can generate
associative relationships rich enough to provide a biological mecha-
nism for such phenomena.

In an early test of the model (Trehub 1979), a synaptic matrix that
received visual input from a 6 x 6-cell retina was simulated. Two
different modes of recall were examined. The stimuli consisted of 25
scenes, each composed of a combination drawn randomly from a set
of four objects (patterns) or an empty space and randomly assigned
to each quadrant of the scene (figure 10.1). Filled regions designated
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Figure 10.1

Scenes presented for learning and subsequent recall. Letters A—Y represent associated
class designations. Source: Trehub 1979. Copyright Academic Press (London) Ltd.
Reproduced by permission.

points of stimulation to the retina and thence through the afferent
channel to their coordinate mosaic cells in the synaptic matrix. Each
scene was arbitrarily centered on the normal foveal axis. Scenes were
learned in accordance with equation 2.3 but without assuming a den-
drodendritic spread of excitation in the mosaic cell layer. In this simu-
lation, the learning parameters were arbitrarily set as follows: b = 1
(although it is not necessary to assign b in a simulation because b is
assumed to be uniform over all adaptive cells); ¢ = 2; k = 100. The
products of active stimulus points (pixels constituting an afferent
scene) and their coordinate synaptic transfer weights were summed
for each scene on each of.the 25 output classes ({);) and ordered in
terms of descending magnitude. This procedure yielded a table of
associative rank, or hierarchy of recall, which is reflected in the rela-
tive latency of class cell discharge (figure 10.2).

For a given stimulus, if a class cell ({);) remains inhibited immedi-
ately after it fires, the () that is next highest in the associative hierar-
chy will have an opportunity to fire. Thus, sequences of associative
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Figure 10.2
Hierarchical associative order of all scenes in response to each stimulus scene. Source:
Ibid. Copyright Academic Press (London) Ltd. Reproduced by permission.

recall are produced by inhibiting for the duration of a recall sequence
each Q immediately after it has discharged and signaled the scene
that it has detected and classified. If an initial retinal pattern is main-
tained as a continuing stimulus to the mosaic cells in a synaptic matrix
while class cells are successively inhibited immediately after their
activation, the sequence of associations is called a stimulus-bound
recall sequence. If an initial pattern is not maintained as a stimulus
and subsequent excitation of mosaic cells is provided only by the brief
class cell collateral volleys back to the imaging matrix, the sequence of
associations is called an image-bound recall sequence.

Figure 10.3 shows a comparison of the two modes of recall in re-
sponse to the presentation of scene S as the initiating stimulus. In
both modes, the first pattern class and image recalled are those cor-
rectly matched to the initiating scene, as one would expect in an
accurate perceptual system. The second response of the network is
also the same for both modes: the class and image recalled are those
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standing at rank order 2 in associative strength with scene S. This
outcome is also to be expected because the image that generates the
second response (class F) in the image-bound sequence is identical to
the external scene in the stimulus-bound sequence (see figure 10.1).
Thereafter, however, the chain of association is distinctly different in
the two modes of recall.

Whereas the stimulus-bound sequence proceeds monotonically
down the associative hierarchy (orders 1, 2, 3, 4, 5, 6) with respect
to the initial scene, the image-bound sequence defies monotonicity
and ranges widely over the associative hierarchy of the initial scene
(orders 1, 2, 6, 12, 9, 20). Yet despite its random appearance, this
latter sequence of associative recall is systematically determined by
the functional characteristics and learning history of the synaptic
matrix.

The first six recollections of the synaptic matrix in response to each
of the 25 scenes were examined, and the median and range of associa-
tive ranks were derived (figure 10.4). In the stimulus-bound recall
mode, associative rank relative to the initial scene was always identi-
cal to the order of recall. For the image-bound recall mode, however,
after the second recall, median associative rank departed markedly
from recall order, and the range of associations within the first six
recollections spanned almost the entire hierarchy.

These data show that sequential recall in a synaptic matrix can
exhibit, on the basis of this module’s intrinsic properties, characteris-
tics of orderliness or looseness of association that appear to conform
with human associative behavior.

Recognition under Noisy Conditions: I

In this simulation (Trehub 1987), a microworld was constructed in
which three motivated characters moved about and interacted within
an environment that had a number of objects and “‘natural” features
relevant to a number of goals arbitrarily installed in each of the char-
acters. The microworld consisted of David, Lisa, a dog named Wolf,
David’s house, Lisa’s cottage, a restaurant, a pond, a pine tree forest,
and a rabbit. Here we will consider only the visual-cognitive aspects
of the simulation and ignore the motivations that shaped each charac-
ter’s travel route in the simulated environment.

The principal character, David, was endowed with a synaptic ma-
trix so that he was able not only to move among the objects in his
world, as the other characters could, but also to learn and later recog-
nize the visual world about him. After David learned the individual
elements of his world, the simulation program projected to his 21 X
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Figure 10.4

Median and range of associative rank of recalled scenes relative to initiating scenes
through six sequential recollections. Filled squares designate stimulus-bound recall;
open squares designate image-bound recall. Source: Ibid. Copyright Academic Press
(London) Ltd. Reproduced by permission.

21—cell retina all objects that happened to be close to him (within an
arbitrary distance) during the course of his activities. The visual stim-
uli were arbitrarily centered on the normal foveal axis, and he was
programmed to make a “verbal” response appropriate to the objects
encountered. If two or more objects happened to be close enough to
be “seen,” their patterns were arbitrarily superposed on the retina.
When this occurred, the synaptic matrix had to disambiguate the
complex image for each of the superposed objects to be correctly
recognized. The network was able to respond to each of the constit-
uent objects in succession because any class cell that signaled the
presence of its associated object auto-inhibited immediately after its
discharge. This released other class cells, enabling a different cell to
fire and signal the presence of a different object (top, figure 10.3).
The program allowed the investigator to introduce controlled
amounts of visual noise into the environment. Noise was both addi-
tive and subtractive; an active pixel (pixel = 1) in the visual field




176  Chapter 10

would either be erased (pixel = 0) or remain unchanged, and an
inactive pixel (pixel = 0) would be activated (pixel = 1) or remain
unchanged. Pixels affected by noise were selected on a random basis,
with the overall proportion of affected pixels determined by the per-
centage of noise introduced. Under the condition of 100 percent
noise, each pixel in the visual field had a 50 percent chance of chang-
ing from on (active) to off (inactive) or from off to on.

Figure 10.5 shows a moment from the dynamic simulation in which
David has encountered Lisa at the restaurant. The divided inset at
the upper left shows the image of Lisa superposed on the image of
the restaurant as they would appear on David’s retina if there were
no visual noise and as they actually appeared, degraded by the intro-
duction of 40 percent noise. The verbal responses show that, under
this condition of pattern superposition and visual noise, David cor-
rectly recognized both Lisa and the restaurant. Examination of rec-
ords over extended periods of simulation indicate that, even with
superposition of objects, errors in recognition are rarely made until
the noise level exceeds approximately 70 percent. In the initial learn-

2(.4)LISA
2(.4)RESTAURANT

Figure 10.5

One frame of the microworld simulation copied directly from the CRT display. David
has just encountered Lisa at the restaurant (far right). At the upper left of the display,
the divided graphic inset shows, on the left, the image of Lisa superposed on that of
the restaurant as it would appear to David if there were no visual noise. On the right
side of the inset is the same image degraded by 40 percent random visual noise, which
is the actual stimulus projected to David’s retina. David’s verbal responses at the
bottom of the CRT display show that he has correctly identified both the restaurant
and Lisa despite superposition and substantial image degradation.
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ing situation, David was exposed to only one character or object at a
time. Thus, the ability of the synaptic matrix to disambiguate and
properly recognize later each superposed component of a complex of
patterns, degraded by substantial levels of visual noise, represents a
powerful generalization of the original learned response.

Recognition under Noisy Conditions: I

In the previous simulation, visual patterns were arbitrarily centered
on the normal foveal axis. In the test described in this section, stimuli
were presented in the visual field at locations eccentric to the initial
point of fixation. Thus, the network had to initiate a visual saccade
to each stimulus, and the stimulus pattern had to be adaptively
shifted on a retinoid in order for its centroid to fall on the normal
foveal axis.

The network was simulated with a 16 x 16—cell retina. The learn-
ing parameters were arbitrarily set at ¢ = 1; k = 100. A gradient
coefficient of 0.6 was set for dendrodendritic transfer to neighboring
cells in the mosaic array. Base error tolerance (ET) for centroid align-
ment on the normal foveal axis was set at three retinoid units.

Test stimuli consisted of four different alphabetic characters in up-
percase Geneva font: G, L, O, and Q. First, a quasi-random jumble
of lines was presented as a separate stimulus and learned as “NO-
LETTER.” Then the model learned to recognize and identify each of
the four letters in their pristine form (no noise degradation). Figure
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Figure 10.6

Distribution of synaptic transfer weights (¢) on the dendrites of filter cells following
learning. Each point on the dendritic line represents the relative magnitude of transfer
weight for that synapse. The stimuli that were learned in the examples shown are as
follows: 1 = random visual pattern; 2 = quasi-random scribble (NOLETTER); 3 = G;
4=1,5=0;6 =Q.
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Recognition performance for each of four test stimuli as a function of level of visual
noise.

10.6 shows the distribution of synaptic transfer weights (¢) on filter
cells that had been modified in the course of learning the stimuli used
in this simulation. Recognition tests were then performed in 10 blocks
of 20 trials for each letter, with a different level of visual noise (addi- .
tive and subtractive) introduced for each block of trials. Noise ranged
from 10 to 100 percent, where the magnitude of noise indicates the
proportion of stimulus pixels affected.

As each letter was presented, the model network was required to
identify it. Response on each trial could be one of the following: G,
L, O, Q, or NOLETTER. Because a letter was always presented,
though it might be distorted by 100 percent noise, the response NO-
LETTER was always counted as an error. The four histograms in
figure 10.7 show the percentage of correct responses for each of the
four letters as the level of visual noise increased from 0 to 100 percent.
In each case, there were no errors in recognition until visual noise
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Table 10.1
Number of instances of false recognition under noisy condition

Recognized As

G L (e} Q

G - 0 4 5

Letter L 1 2 0
Presented 2 0 - 5
Q 3 0 15 -

exceeded at least 30 percent. Performance remained better than 50
percent correct until noise exceeded 60 percent.

The stimuli were deliberately selected to include three with sub-
stantially similar shapes (G, O, Q) and one with a shape unlike the
others (L). Table 10.1 shows the number of false recognitions of each
letter as a function of the letter presented. The pattern of confusion
in recognition conforms in general with what one might intuitively
expect. The greatest number of misidentifications occurred when the
letter Q was presented. In the context of high levels of noise, it was
incorrectly “seen” as the letter O 15 times. The specific vulnerability
of the letter Q is apparently due to the fact that its discrimination
from O depends on the presence of a tiny visual feature—the diago-
nal stroke at the bottom right of the figure. Interestingly, O was
misidentified as Q only five times. (One wonders if the same task
presented to humans would yield a similar asymmetry in confusions
between O and Q.) The letter G was confused with O and Q in
approximately equal measure. And the letter L exhibited the least
number of misidentifications, a result that might be expected given
its distinctive shape in the memory set.

Recognition under Rotation

The simulations just described demonstrate the robustness of the
putative brain mechanisms when learned stimuli must be recognized
despite degradation by visual noise. Now suppose that a visual stim-
ulus is learned at a particular angular orientation in the frontal plane
and is then presented at a different orientation. How robust will
the network be in recognizing learned exemplars that undergo such
rotational transformation? One way to ensure recognition under rota-
tion is to transform input patterns covertly until they match the orien-
tations of previously learned exemplars. Another way of dealing with
recognition under rotation would not necessarily ensure successful
recognition but might be ecologically efficient for many purposes:

&
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to learn an object in enough different angular orientations so that
exemplars of the object at intervening orientations would, with high
probability, be more closely matched to their appropriate filter cells
than to incorrect f cells. If this were the strategy, how would perfor-
mance degrade as a stimulus departed from the angular orientation
at which it was learned? How many different orientations would
have to be learned to provide reasonably adequate performance with
arbitrary stimulus rotations? The following simulation was run to
provide some clues.

A 16 x 16—cell retina provided input to the system. Parameters for
learning were ¢ = 1; k = 100. The gradient for dendrodendritic excita-
tion was set at 0.6. Base error tolerance (ET) for automatically shifting
pattern centroids to the normal foveal axis was set at three retinoid
units. The uppercase letters L, O, and G (Geneva font) were the
stimuli used in this test.

Each letter was learned at its normal vertical orientation (0 degree)
and at a clockwise rotation of 22 degrees. Figure 10.8 shows the
distribution of synaptic transfer weights on filter cells that were tuned
to the stimuli at their standard orientation and at a clockwise rotation
of 22 degrees. Because the letter L is an asymmetrical yet relatively
simple stimulus, with a single vertical and horizontal stroke, it was
used to see how a filter cell, having learned the pattern at its normal

6
22° L__MMIMLA___

Figure 10.8
Comparison of synaptic transfer weight profiles on the dendrites of filter cells for each
of three stimuli learned at normal (0 degrees) and rotated (22 degrees) orientation.
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vertical orientation, would respond to exemplars of L at different
angular orientations.

Figure 10.9 shows how the discharge of a filter cell that has learned
a vertical L (0 degrees) changes when it is stimulated with the same
letter at angular orientations ranging from —55 to +55 degrees. The
responses of the cell over the range of stimulus orientations are plot-
ted as an output proportional to its discharge when it is presented
with the letter that it has learned. When the stimulus was rotated
away from its normal representation, the filter cell response did not
fall abruptly but rather exhibited a graded decrement analogous to
the response of a band-pass filter in the frequency domain. Indeed,
when the stimulus was tilted as much as 22 degrees in either the
clockwise or counterclockwise direction, filter cell discharge declined
to no less than 52 percent of its maximum.

In a test of recognition under rotation, each of the three letters
was rotated clockwise from 0 to a maximum of 55 degrees in incre-
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Figure 10.9
Response of a filter cell (L/0°) to rotation of its learned exemplar.
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ments of approximately 11 degrees (figure 10.10). Each letter was
presented for recognition in blocks of 20 trials for each of its angular
orientations.

The percentage of correct responses for each of the six different
orientations is given in table 10.2. Recall that the letters were learned
at their standard orientation (0 degrees) and at a rotation angle of 22
degrees. It is not surprising that recognition performance was 100
percent correct for all letters at the two learned orientations. How-
ever, recognition was also at the 100 percent level for all letters at the
intermediate orientation of 11 degrees, which had not been learned.
Moreover, for the letters L and O, there were no errors at the novel
orientation of 33 degrees. As clockwise rotation increased, recogni-
tion of the letter L decreased to 35 percent at the 55 degree orienta-
tion, while recognition of O remained at or near the 100 percent level.
Recognition of the letter G was 75 percent correct at 33 degrees and
declined to 55 percent at 55 degrees.

When we examine the nature of the errors made in this test (table
10.3), we see that L was confused with G 22 times but was never
confused with O. There was only one confusion of the letter O, and
that was with G. The letter G, on the other hand, was confused with

ROTATION

G & & &
¢ ¢ o
{ ¢ < ¢

0° 11° 22° 33° 44° 55°

Ny |

G
0
L

r-..

Figure 10.10
Stimuli used in test of recognition under rotation.

Table 10.2
Recognition under rotation

DEGREES ROTATION

° 1 22° 33 44 55°

Lot L 55| 35
etter

Presented o 95 | 100

70 | 55

Note: Cells indicate percentage of correct responses to test stimuli. Shaded
cells show where exemplars were learned.
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Table 10.3
Number of instances of false recognition under rotation

Recognized As

L o G
L - 0 22
Letter N
Presented o 0 !
G 0 20 -

O 20 times but was never confused with L. The striking resistance of
the letter O to confusion is most likely due to its relative symmetry
under rotation, a property shared somewhat less by G and least by
L. However, given the rough similarity in shape between G and O,
it is impressive that recognition performance was 100 percent correct
for these stimuli as well as for L when rotation was 11 degrees in
angular distance from their bounding learned exemplars (0 degrees
and 22 degrees).

More parametric work should be done to examine the performance
of the model with rotated stimuli, but these results suggest that the
proposed neuronal mechanism is robust under rotational transforma-
tion, as well as with visual noise. If, in fact, exemplars of a rotated
object need only be learned at approximately 11 degree intervals to
ensure adequate recognition with arbitrary rotation, then the issue
of neuronal resource constraints becomes a less thorny one.

Episodic Learning and Recall

In chapter 5, a model neuronal mechanism was described that was
able to control the timing, registration, and location of episodic learn-
ing in a synaptic matrix. It was also shown how this mechanism,
composed of a clock circuit and a recall circuit, could serve to deter-
mine the temporal locus and sequence of recalled episodic experi-
ence. In the following simulation of episodic learning (Trehub 1983),
the model was tested with some added assumptions concerning the
effects of fluctuating levels of arousal and the time course of memory
decay.

Learning proceeded according to the basic formula for synaptic
modification (equation 2.3) in the matrices for stimulus detection and
imagery, with the additional assumption of transfer weight (¢) modu-
lation according to the momentary level of randomly fluctuating
arousal. This assumption was made on the grounds that increased
diffuse priming of filter cells (f) by higher levels of arousal would
induce a more vigorous response in those cells that were undergoing
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modification in the learning process and, as a result, the amount of
free DTF (represented by the coefficient k) would increase. Thus,

by =B +S(+INYL (10.1)
b—Lim

where L is a normal random variable with ¥ = 1.0 and o = 0.2
(arbitrarily chosen) and represents a randomly fluctuating arousal
context for each instance of learning.

A long-term decay function for synaptic transfer weights (¢) was
chosen on the basis of Wickelgren’s (1974) proposal for memory de-
cay. Thus, for ¢ decay in episodic learning,

b = by (1 — By~ (10.2)

where ¢, = synaptic transfer weight immediately after learning; ¢ =
time elapsed since initial learning; B = first parameter for decay rate;
and = second parameter for decay rate. In this simulation, the two
parameters were arbitrarily set with § = 2.0 and ¢ = 0.5.

It was assumed that in order to recall any given component image
in a contiguous sequence of learned stimuli (an episode), the sum
of ¢, values (equation 10.2) supporting that image must exceed a
concurrent threshold value. It was further assumed that recall thresh-
old would change from moment to moment as an inverse function
of the level of randomly fluctuating arousal (L). Thus,

0=L1+r1 (10.3)

where 6 = recall threshold; L = level of arousal; and 7 = base thresh-
old level. Note that L (which modulates recall threshold at each in-
stance of recall) is taken as a normal random variable with ¥ = 1.0
and o = 0.2.

Assuming an appropriate repertoire of language to characterize
component images during an epoch of learning, figure 10.11 presents
the set of primitive images and associated language that was used in
the simulation. Figure 10.12 shows the results of testing the neuronal
network for episodic learning and recall. A complete episode was
learned via successive input on a 6 x 6-cell retina. The sequence of
stimuli is shown in figure 10.12 beside ELAPSED TIME 00. Episodic
recall was tested at elapsed times corresponding to 1-14 days follow-
ing the original learned experience. Failure to recall particular details
of the episode increases as time passes. Occasional recovery of mem-
ory for forgotten details is also seen in figure 10.12.
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IMAGE ASSOCIATED LANGUAGE
M o =me
= aman
= a woman
= Ann’s house

Forbes’ store

acar

on Main Street (to)

= my house

my car

me in my house

me in my car

me in Forbes’ store

me in Ann’s house
= (somebody) meets (somebody)

= me travelling (somewhere)
= (somebody) together with (somebody)

= (somebody) leaves (somebody)

= (somebody) goes into (something)

264+ 4 xPRPERPCIDR DL
[}

= (somebody) goes out of (something)

X

= (something) collides with (something)

Figure 10.11
Primitive images and associated language. Source: Trehub 1983. Copyright Lawrence
Erlbaum Associates, Inc. Reproduced by permission.

In order to convey the flavor of episodic learning and recall as
exhibited by the model, a protocol of descriptive language appro-
priate to the original episode and to later “verbalized” recollections
is presented below (figure 10.11). Oblique lines separate underlying
component images (patterns evoked in the imaging matrix). Words
bracketed by ( and ) indicate the absence of a specific image. Words
in parentheses were arbitrarily added to improve the narrative flow
of the protocols. Word tense was arbitrarily changed wherever it was
grammatically appropriate.

Elapsed Time = 00

/I am in my house/. /I/ go out of/ my house/ (then) go into/ my
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ELAPSED
TIME
00 AX+AVa@I=A4+A*T+X+0¢@a3=0T ¢ XtratBX+TR4BdI=ara
01 BXAOIo2I=040%Te¢X 4+ J@a=0T+¥X aiBX+TXIBr=ara
02 BX20¥> 3= 4OXTeX 4+ I=DT+¢+T aiBR+TXvar»=a >
03 BXI0Y I=03 *Te 4 4B3=DT+¥X BIBR+TXVDI=0 &
04 BX204 =0+ *F+ 4 I=DF e OIDX+TRVdI=0 »
0s BX+0V > xXTe 4 >I=DT . VDT -TXIDI= »
06 104 > v xFexa I=D VDT +TTvRd=0o >
07 BX+0O4 > xEe 4 = T oV X+TXI2r3=0 >
08 *1+04 *Te 4 = T o4 T+TXImI=o
09 Tr0¥ 3> Y e = . VDT +TL I¥=p @
10 OX+0¢ *F e = T+ OIDT+ Tipdar=
11 104 > xFe o @>= . ov TeTXIm>
12 D%+ ¢+ x . 4 =T oIVBRY T I
13 +04 x o = ¢ DY XT+TXVaI= »
14 +0¢ x . 4 = F o TetTXID>

Figure 10.12

Simulation test. Top row: Complete sequence of learned images in the original episode.
Following rows: Recalled episodic images at indicated elapsed times. Source: Ibid. Copy-
right Lawrence Erlbaum Associates, Inc. Reproduced by permission.

car/ (and) travel/ on Main Street to/ Ann’s house/ (and) meet/
Ann/. /I/ together with/ Ann/ go out of/ Ann’s house/ (and) go
into/ my car/ (and) travel/ on Main Street to/ Forbes’ store/. /I/
together with/ Ann/ go out of/ my car/ (and) go into/ Forbes’
store/. (Then) I/ leave Ann/ (and) I/ go into/ my car/ (and) travel/
on Main Street/. /A car/ collides with/ my car/.

Elapsed Time = 01

/I was in my house/. /I/ went out of/ my house/ (and) got into/
my car/ (and) travelled/ on Main Street to/ Ann’s house/ (then)
went into/ Ann’s house/ (and) met/ Ann/. /Ann/ (and) I/ left
(somewhere)/ (and) went into/ my car/ (and) travelled/ on Main
Street to/ Forbes’ store/. /Ann/ was with me/. /(I remember) my
car/ (and) going into/ Forbes’ store/. /(Then) I/ left/ Ann/ (and) I/
got into/ my car/. /I/ travelled/ on Main Street/. /A car/ collided
with/ my car/.
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Elapsed Time = 07

/1 was in my house/. /I/ went out of/ my house/ (and) got into
(something). /I travelled/ (somewhere). (Then I remember) /
(somebody) met Ann/. /Ann/ (was) together with/ (somebody). (I
remember) /my car/ (and) going into/ (something). (I remember) /
leaving/ Ann/ (and) /getting into/ my car/ (and) travelling/ on
Main Street/. (I remember) /another car/ (and) being in my car/.

Elapsed Time = 14

(I remember) (someone) /leaving/ my house/ (and) going into
(something). (Then) (someone) /met (somebody)/ (and) together/
(they) got out of/ (something). (I remember) /Main Street/.
/(Somebody) was with/ me/. (I remember) /my car/ (and) (some-
body) /going into/ (something). (Then I remember) 1/ left/ Ann/
(and) got into/ my car/ (and) travelled/ (somewhere).

The behavior exhibited by this network can be elaborated in a num-
ber of interesting ways. For example, if the component images in an
episode were to evoke different hedonic values linked to the magni-
tude of arousal (L), then the relative temporal density of particular
episodically linked images and the individual probabilities of their
recall would vary accordingly over an episode. Two different individ-
uals experiencing the same episode might well give two quite differ-
ent accounts depending on their personal emotional response during
the experience. As an example of excessive arousal inducing psycho-
pathological behavior, suppose an individual is in a heightened state
of arousal for an extended period of time. Under this condition, the
neuronal clock will run very fast for a long time due to arousal prim-
ing of the clock ring. Given a constant ¢ decay function (equation
10.2), ¢ changes in the filter cells (f) of the detection matrix might
not have sufficient time to decay close to initial values before the f
cells are recycled and primed for learning. If this happens, compo-
nent episodic images would be confounded with earlier memories,
and, if the confounding is extreme, one might characterize the indi-
vidual as being in a pathologically confused state.

Not all episodic memories must be controlled by a single clock ring.
It is more likely that there is a hierarchically structured system of
clock rings and recall rings with short (high frequency) to long (low
frequency) priming-pulse intervals for temporally organized learning.
In such a network, we would assume that the high-frequency circuits
would recycle over short periods of time, and low-frequency circuits
would exhibit long recycle periods.





