Physics 850: Soft Condensed Matter Physics, Fall04 A.D. Dinsmore Lecture 7: Dynamics of individual particles in solvent

Lecture 7: Dynamics of murvidual particles in solvent – the Langevin Equation
Dynamics of particle motion-Langevin egn
Equilibrium configurations of energies are correctly described using start much with no moution of the motion of solvent (eg Mro) mobales.
Dynamics of fluctuations or response to external forces requires something more
external forces requires something more
Langevin > m dv = -bv + f(t), (+ external force) viscous drag, rapid fluctuations (collisions) viscous drag, with solvent indecides from averaged response of solvent (flow)
from averaged
example response of solvent (flow)
and the state of t
spherical porticle, radius R mass m
mass m
Sphere - b = 6 T/n R (friction coefficient)
not R-
is a society dissipotion.
VISCOSITY - VESTER "
units: lais or other
" ("No storie" fluid (or de liquid) n = consta +
VISCOSITY - represents dissipotion. VISCOSITY - represents dissipotion. units: Pars or dyne & Poise" cm2.5 for "Newtonian" Fluid (a simple liquid), n = constant. for "non-Newtonian" fluid (15 colloid polymers Hutten), n depends on shear rate polymers Hutten), n depends on shear rate
for "non-Nustonian" flivid (& colloid polymers North), of depends on shear rate polymers North), may differ for shear textensional flow
* extensional flow

What is viscosity of a simple liquid? (from Witten's Structured Fluids) Upon being sheared, aliquid's struture changes: oool shear e.g. now too close together along siderection · Timescale for flired response (assume Tis well above glass, to a typical fine for moleculato move

Its own allstance

> kot

m

Note: (kot = 4pN.nm) at room temp 50 to 0.2×10-9m 24×10-3 kg/mot 1/4×10-21 Nm 1 6×10-25 motorly · Eusqu scale: modulus ~ energy - energy must be = hot for liquid point, at least) if it's >> kaT - solid 50 modulus n kBT = 4×10-21 n.m. = 5×10 8 N2 (Pa) Result y [Pa.s] = 5×108×2.10-12 = 10-3Pa.s Corder of magnitude on estimate only! this is the value for H2O.

Shear viscosity and surface tension (w/vacuum) of various Liquids at 20°C (http://www.science.uwaterloo.ca/~cchieh/cact/c123/liquid.html)

	Common liquid	Viscosity /cP	Surface tension /N m ⁻¹			
Poise, $P = cgs$ unit	Diethyl ether	0.233	0.0728			
(dyne• s/cm^2)	Chloroform	0.58	0.0271			
1 cP (centi-Poise) = 0.01 P	Benzene	0.652	0.0289			
$1 \text{ mPa} \cdot \text{s} = 1 \text{ cP}$	Carbon tetracholoride	0.969	0.0270	Witten's argument does not apply because 20°C is		
	Water	1.002	0.0728			
	Ethanol	1.200	0.0228	the m.p., so energy scale		
	Mercury	1.554	0.436	can be $\gg k_BT$. (glycerol does not actually freeze at		
	Olive oil	84	- /	this T , but that is a kinetic		
	Castor oil	986		matter)		
	Glycerol	1490	0.0634			
gas is	Glasses	very large	(>10 ¹³)	Witten's argument does work here, well		
expected to have much smaller h .	Gallium	1.9 (at 53°C, ~ 20° above m.p.) above m.p., even though it's a metal.				
smaner II.	H ₂ gas	0.009 (a	t 1 atmo pressure,	from CRC)		

Working with the Langevin equation: (see e.g. Pathria § 13.4) in de = -bi + f(t) faster than 10-12 because collisions come from many uncorrelate (it's often assumed (f(t) f(t+ r)) & S(r)) this fluctuates because of it Ensemble- average if To: かくがり= -トインナイをあ Solution: $\langle \vec{v}(t) \rangle = |\vec{v}(0)| e^{-t/\tau}$ (no external force)

where $|\tau = \frac{m}{b}| = viscous relaxation time$ a) 1-um sphere in water $T = \frac{473 \pm 10^{-18} \, \text{m}^3 \times 10^{-3} \, \text{g}}{6 \pm 10^{-6} \, \text{m} \cdot 10^{-3} \, \text{ps}} = 10^{-7} \, \text{s}$ b) spherical submarine, R= Im Tx 93 = a2 -> T= 1055 Temporal correlation of J: (vict). V(t+t) = function of t = Cv(t) use the above result: <5(t'+t)>= V(+) e - Aparticle forgets its velocity over a time of ? Creta(text), but to at longer time. Has no effect on motion for t>> T, which is our focus

Response to external forces: Terminal vel. $m \frac{dv}{dt} = -bv + F_0$ $\langle \vec{v}(t) \rangle = \frac{F_0}{b} (1 - e^{-t/c})$ if $\vec{v}(0) = 0$

terminal velocity of Fo is reached when to I

example - sedimentation of lastex spheres in water

Fo = g (msphere - Munter) = g. 3TTR & Ap = 0.05

 $V_{\text{sed}} = 9 \frac{4_3 \text{ TR}^3 \Delta \rho}{6 \text{ Tyr}} = \frac{2}{9} 9 \Delta \rho R^2$

used = 0.1 jum

Does the sphere Sit on the bottom? No-Brownian motion Keeps is suspended over a height known as 'gravotational length,' lg

(Mple-Munitr) glg=kt -> lg ~ 8 mm

Mean-square displacement from Langevin egn. -> multiply equ by it and take ensemble (Harmal) aug-くで、かくさい + くでかり $= \frac{1}{2} \frac{d^{2}(\vec{r}^{2})}{dt^{2}} = \frac{1}{2} \frac{d(\vec{r}^{2}, \vec{r}^{2})}{dt} = \frac{1}{2} \frac{d(\vec{r}^{2}, \vec{r}^{2})}{dt}$ 50 \frac{1}{2} d'\(\cdot \cdot or 9, <1, > + 1 q <1, > = 3kt in equil. solution, with d (12) =0 < (+)> - < (2)> = 6kT = [t-=(-e-+)] limits: = cel then (12(+)-100) = 6kt = (6-2 (1-1-4-20) Ballistic motion > = 3kt t' = < v->t2 た>>1 → (+)(+)-12(0))=6kT t Diffusive motion mean square olisplacement (= 6Dt D = KBT

Measuring Diffusion using Video Microscopy Crocker and Grier, J. Colloid Interface Sci. **179**, 298 (1996).

Slope = 4D (in two dimensions) $\rightarrow D = 0.46 \pm 0.01 \ \mu \text{m}^2/\text{s}$, in agreement with Stokes-Einstein value.

Fluctuatum - Dissipation Theorem
fluctuation friction (dissipation factor
A general result: dissipation leads to fluctuation. But larger dissipation - smaller fluct.
In more detail: (6kgT = 5 v(0). v(t) dt
Kubo's Another example: bksT = \(\tilde{I}(\omega) \cdot \tilde{I}(\omega) \rightarrow I
electronic 5->R m > L r > Q f > V (voltage) \(\frac{1}{3} - \frac{1}{2} \)