Physics 850: Soft Condensed Matter Physics, Fall04
A.D. Dinsmore

Lecture 7: Dynamics of individual particles in solvent - the Langevin Equation Dynamics of particle motion \rightarrow Langevinegn

Equilibrium configurations 1 energies are correct h described using stat mech with no mouton of the motion of solvent $\left(\lg \mathrm{H}_{2} \mathrm{O}\right)$ molecules.

Dynamics of fluctuations or response to external forces requires something more...

$$
\begin{aligned}
\text { Langevin } \rightarrow m \frac{d \vec{v}}{d t}= & \underbrace{-b \vec{v}}+\underbrace{\stackrel{\rightharpoonup}{f(t)} \text { (tom averaged }}_{\begin{array}{c}
\text { vapid fluctuations drag. (collisions) } \\
\text { with solvent molecules }
\end{array}} \begin{aligned}
\text { (external force) } \\
\text { example }
\end{aligned} \\
& \text { response of solvent (flow) }
\end{aligned}
$$

 mass m

$$
\text { Sphere - } b=6 \pi / \eta R \text { (friction coefficient) }
$$

VIScosity - represents dissipation. units: $P_{t^{\frac{N}{m^{2}}}}$ or $\frac{\text { dye }}{\mathrm{cm}^{2} \cdot \mathrm{~s}}$ "Poise"

* for a "Newtonian" fluid (a simple liquid), $\eta=$ constant.
for "non-Nustomian" fluid (es colloid polywersilution), η depends on shear rate polymersilution) and my differ for shear I extensional flow

What is viscosity of a simple liquid?
(from Written's Structured 2.2 (voids)
Upon being sheared, aliquid's structure change:

nous too close together along riderection

- Timescale for fluid response (assume T is well transition glass transition. $t^{*} \simeq \frac{a}{\sqrt{\left\langle v^{2}\right\rangle}} \approx$ typical time for molecule to move its own distance

$$
\rightarrow \frac{k_{B} T}{m}
$$

Note: $h_{B} T=4_{p} N \cdot n m$ at room temp

- Energy scale: modulus $\simeq \frac{\text { energy }}{\text { volume }}$

$$
\text { if it's } \gg k_{B} T \rightarrow \text { solid }
$$

Result $\eta[\mathrm{Pa} \cdot \mathrm{s}] \simeq 5 \times 10^{8} \frac{\mathrm{~N}_{2}}{\mathrm{~m}_{2}} \cdot 10^{-12} \mathrm{~s}=10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}$ (order of maquidude this is the value for $\mathrm{H}_{2} \mathrm{O}$. estimate only!)

$$
\begin{aligned}
& =\frac{1}{15 \times 10^{-11} \mathrm{~s}=10^{-12} \mathrm{~s}} \begin{array}{l}
\text { inter-molec. } \\
\text { innescale } \\
\text { for fluids }
\end{array}
\end{aligned}
$$

Shear viscosity and surface tension (w/vacuum) of various Liquids at $20^{\circ} \mathrm{C}$

(http://www.science.uwaterloo.ca/~cchieh/cact/c123/liquid.html)

Poise, $\mathrm{P}=$ cgs unit
(dyne• $\mathrm{s} / \mathrm{cm}^{2}$)
$1 \mathrm{cP}($ centi-Poise $)=0.01 \mathrm{P}$
$1 \mathrm{mPa} \cdot \mathrm{s}=1 \mathrm{cP}$

	Common liquid	Viscosity /cP	Surface tension $/ \mathbf{N ~ m}^{\mathbf{- 1}}$
Poise, $\mathrm{P}=\mathrm{cgs}$ unit (dyne• $\mathrm{s} / \mathrm{cm}^{2}$)	Diethyl ether	0.233	0.0728
	Chloroform	0.58	0.0271
$1 \mathrm{cP}($ centi-Poise $)=0.01 \mathrm{P}$	Benzene	0.652	0.0289
$1 \mathrm{mPa} \cdot \mathrm{s}=1 \mathrm{cP}$	Carbon tetracholoride	0.969	0.0270
	Water	1.002	0.0728
	Ethanol	1.200	0.0228
	Mercury	1.554	0.436
	Olive oil	84	
	Castor oil	986	
	Glycerol	1490	0.0634
gas is expected to have much smaller η.	Glasses	very large	($>10^{13}$)
	Gallium	1.9 (a	t $53^{\circ} \mathrm{C}, \sim 20^{\circ}$ abo
		------7fr	om'CRC Handbo
	H_{2} gas	0.009 (a	t 1 atmo pressure

Working with the Langevin equation:
(see e.g, Pathria $\{13.4$)

$$
m \frac{d \vec{v}}{d t}=-b \vec{v}+\vec{f}(t)
$$

C very rapidly fluctuating because collisions
come from mam uncoredote - $=$ molecules.
\uparrow (it's often assumed $\langle\vec{f}(t) \cdot \vec{f}(t+\tau) \propto \delta(\tau)$)
this fluctuates because of \vec{f}
Ensemble - average if \vec{V}_{0} :

$$
m\left\langle\frac{d \vec{v}}{d t}\right\rangle=-b\langle\vec{v}\rangle+\langle\vec{f}(t+)\rangle
$$

\longrightarrow Solution: $\langle\vec{V}(t)\rangle=\vec{V}(0) e^{-t / \tau}$ (ndexternal force)
where $\tau \cong \frac{m}{b}=$ viscous relaxation time
example:
a) 1 -em sphere in water, $-3 \times$ density of particle $N 1 / \mathrm{cm}^{3}$

$$
\tau=\frac{4 / 3 \pi \cdot 10^{-18} \mathrm{~m}}{6 \pi \cdot 10^{-6} \mathrm{~m} \cdot 10^{-3} \mathrm{pa} \cdot \mathrm{~s}} \times \frac{10^{-3} \mathrm{~kg}}{\left.10^{-6} \mathrm{~m}\right)} \simeq 10^{-7} \mathrm{~s}
$$

b) Spherical Submarine, $R=1 \mathrm{~m}$

$$
\tau \propto \frac{a^{3}}{a}=a^{2} \rightarrow \tau=10^{5} \mathrm{~s}
$$

Temporal correlation of \vec{V} :

$$
\left\langle\vec{v}\left(t^{\prime}\right) \cdot \vec{v}\left(t^{\prime}+t\right)\right\rangle_{\text {ovgover } t^{\prime}}=\text { function of } t \equiv C_{v}(t)
$$

Use the above result: $\left\langle\vec{V}\left(t^{\prime}+t\right)\right\rangle=\vec{V}\left(t^{\prime}\right) e^{-t / \tau}$

$$
C_{v}(t)=\left\langle\frac{v\left(t^{\prime}\right)^{2}}{\frac{3 k T}{m}} e^{-t(\tau}\right\rangle_{t^{\prime}} \rightarrow C_{v}(t)=\frac{3 k_{0} T}{m} e^{* / \tau}
$$

\rightarrow Aparticle forgets its velocity over a time of \tilde{c}
$\left(\begin{array}{rl}\rightarrow \text { Aproperaccanting for heat dissipation gives } \\ & C_{w} e^{-t / r}(t \leqslant \tau) \\ \text { s ut }+t^{-3 / 2} \text { atlonustime. Has no effect on }\end{array}\right.$ motion for $t \gg \tau$, which is our focus

Response to external forces: Terminal vel.

$$
\begin{aligned}
& m \frac{d v}{d t}=-b v+F_{0} \\
& \langle\vec{v}(t)\rangle=\frac{F_{0}}{b}\left(1-e^{-t / \tau}\right) \text { if } \vec{v}(0)=0 \\
& \frac{v}{r}=t
\end{aligned}
$$

terminal velocity of $\frac{F_{0}}{b}$ is reached when ts τ
example - sedimentation of l-matex radius spheres in water

$$
\begin{aligned}
& F_{0}=g\left(m_{\text {sphere }}-m_{\text {water }}\right)=g \cdot \frac{4}{3} \pi R^{3} \Delta \rho^{\ell_{\text {le }}-\rho_{\text {water }}}=0.05 \\
& v_{\text {sed }}=\frac{g \cdot \frac{4}{3} \pi R^{3} \Delta \rho}{6 \pi \eta R}=\frac{2}{9} g \frac{\Delta \rho\left(R^{2}\right.}{\eta} \\
& v_{\text {sad }}=0.1 \frac{\mu m}{\mathrm{~s}}
\end{aligned}
$$

Does the sphere Sit on the bottom? No -Brownian motion keeps is suspended over a hight known as 'gravitational length', l g

$$
\left(m_{p l e}-m_{\text {mat }}\right) g l_{g}=k_{B} T \rightarrow l_{g} \simeq 8 \mu \mathrm{~m}
$$

Mean-square displacement from hangevin eq.
\rightarrow multiply eqn by $\frac{\vec{r}}{m}(t)$ and take ensemble (thermal) any -

$$
\begin{aligned}
& \left\langle\vec{r} \cdot \frac{d \vec{v}}{d t}\right\rangle=-\frac{b}{m} \underbrace{\langle\vec{r} \cdot \vec{v}\rangle}+\underset{0^{2}}{\langle\vec{r} \vec{f}\rangle} \\
& =\frac{1}{2} \frac{d^{2}\left\langle r^{2}\right\rangle}{\left.d t^{2}\right\rangle}-\left\langle v^{2}\right\rangle \quad=\left\langle\frac{1}{2} \frac{d(\vec{r} \cdot \vec{r})}{d t}\right\rangle=\frac{1}{2} \frac{d\left\langle r^{2}\right\rangle}{d t}
\end{aligned}
$$

So $\frac{1}{2} \frac{d^{2}\left\langle r^{2}\right\rangle}{d t^{2}}-\left\langle v^{2}\right\rangle=\frac{-b}{2 m} \cdot \frac{d}{2} \frac{\left.r^{2}\right\rangle}{d t}$
or $\frac{d^{2}\left\langle r^{2}\right\rangle}{d t^{2}}+\frac{1}{\tau} \frac{d\left\langle r^{2}\right\rangle}{d t}=2\left\langle v^{2}\right\rangle$

$$
=\frac{3 k_{0} T}{m} \text { in equil. }
$$

solution, with $\left.\frac{d}{d t}\left\langle r^{2}\right\rangle\right|_{b}=0$

$$
\left\langle r^{2}(t)\right\rangle-\left\langle r^{2}(0)\right\rangle=6 k T \frac{\tau}{m}\left[t-\tau\left(1-e^{-t / \tau}\right)\right]
$$

limits: $\frac{t}{\tau} \ll 1$ then $\left\langle r^{2}(t)-r^{2}(p)\right\rangle=6 k T \frac{\tau}{m}\left(t-\tau\left(x-x+\frac{2}{2}-\frac{t^{2}}{2 \tau}+\cdots\right)\right.$

$$
\underset{\left.t_{r}\right\rangle>1 \rightarrow\left\langle r^{2}(t)-r^{2}(0)\right\rangle=\frac{6 k T}{b} t}{\text { Ballistic motion }} \rightarrow \sim \frac{3 k}{m}
$$

Diffusive motion mean square displacement, $\left\langle r^{2}(t)\right\rangle=6 D t$

$$
D=\frac{k_{B} T}{b}
$$

Measuring Diffusion using Video Microscopy Crocker and Grier, J. Colloid Interface Sci. 179, 298 (1996).

Small offset here from centroid measurement resolution,
$\delta \sim(0.015 \mu \mathrm{~m})^{2}$. << Rayleigh limit! $0.001 \mu \mathrm{~m}$ precision in center of mass of a particle of known shape is feasible
Slope $=4 D$ (in two dimensions) $\rightarrow D=0.46 \pm 0.01 \mu \mathrm{~m}^{2} / \mathrm{s}$, in agreement with Stokes-Einstein value.

Fluctuation - Dissipation Theorem

$$
\begin{aligned}
& \left\langle r^{2}(t)\right\rangle=6 D t \text {, where } D=\frac{k_{B} T}{{ }_{B} D} \\
& \text { fluctuation }
\end{aligned}
$$

fluctuation friction/dissipation factor

A general result: dissipation leads to fluctuation. But larger dissipation \rightarrow smaller fluct.

In more detain: $\quad \frac{6 h_{0} T}{b}=\int_{-\infty}^{\infty} \vec{v}(0) \cdot \vec{v}(t) d t$

$$
\begin{aligned}
& b \rightarrow R \\
& m \rightarrow L \\
& r \rightarrow Q \\
& r \rightarrow Q \\
& f \rightarrow V \text { (vintiop) } \\
& \vec{v} \rightarrow I
\end{aligned}
$$

